Sustained net CO2 evolution during photosynthesis by marine microorganism

نویسندگان

  • Dan Tchernov
  • Miriam Hassidim
  • Boaz Luz
  • Assaf Sukenik
  • Leonora Reinhold
  • Aaron Kaplan
چکیده

BACKGROUND Many aquatic photosynthetic microorganisms possess an inorganic-carbon-concentrating mechanism that raises the CO2 concentration at the intracellular carboxylation sites, thus compensating for the relatively low affinity of the carboxylating enzyme for its substrate. In cyanobacteria, the concentrating mechanism involves the energy-dependent influx of inorganic carbon, the accumulation of this carbon--largely in the form of HCO3(-)-in the cytoplasm, and the generation of CO2 at carbonic anhydrase sites in close proximity to the carboxylation sites. RESULTS During measurements of inorganic carbon fluxes associated with the inorganic-carbon-concentrating mechanism, we observed the surprising fact that several marine photosynthetic microorganisms, including significant contributors to oceanic primary productivity, can serve as a source of CO2 rather than a sink during CO2 fixation. The phycoerythrin-possessing cyanobacterium Synechococcus sp. WH7803 evolved CO2 at a rate that increased with light intensity and attained a value approximately five-fold that for photosynthesis. The external CO2 concentration reached was significantly higher than that predicted for chemical equilibrium between HCO3- and CO2, as confirmed by the rapid decline in the CO2 concentration upon the addition of carbonic anhydrase. Measurements of oxygen exchange between water and CO2, by means of stable isotopes, demonstrated that the evolved CO2 originated from HCO3- taken up and converted intracellularly to CO2 in a light-dependent process. CONCLUSIONS We report net, sustained CO2 evolution during photosynthesis. The results have implications for energy balance and pH regulation of the cells, for carbon cycling between the cells and the marine environment, and for the observed fractionation of stable carbon isotopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress.

We developed a new method using 13CO2 and mass spectrometry to elucidate the role of photorespiration as an alternative electron dissipating pathway under drought stress. This was achieved by experimentally distinguishing between the CO2 fluxes into and out of the leaf. The method allows us to determine the rates of gross CO2 assimilation and gross CO2 evolution in addition to net CO2 uptake by...

متن کامل

Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts

Citation: Rädecker N, Pogoreutz C, Wild C and Voolstra CR (2017) Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of Algal Endosymbionts. Front. Mar. Sci. 4:267. doi: 10.3389/fmars.2017.00267 Stimulated Respiration and Net Photosynthesis in Cassiopeia sp. during Glucose Enrichment Suggests in hospite CO2 Limitation of A...

متن کامل

Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity.

Long-lived shade leaves of avocado had extremely low rates of photosynthesis. Gas exchange measurements of photosynthesis were of limited use, so we resorted to Chl fluorescence imaging (CFI) and spot measurements to evaluate photosynthetic electron transport rates (ETRs) and non-photochemical quenching (NPQ). Imaging revealed a remarkable transient heterogeneity of NPQ during photosynthetic in...

متن کامل

Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.

We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overal...

متن کامل

Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide.

We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997